The Weighted Majority Algorithm
نویسندگان
چکیده
We study the construction of prediction algorithms in a situation in which a learner faces a sequence of trials with a prediction to be made in each and the goal of the learner is to make few mistakes We are interested in the case that the learner has reason to believe that one of some pool of known algorithms will perform well but the learner does not know which one A simple and e ective method based on weighted voting is introduced for constructing a compound algorithm in such a circumstance We call this method the Weighted Majority Algorithm We show that this algorithm is robust in the presence of errors in the data We discuss various versions of the Weighted Majority Algorithm and prove mistake bounds for them that are closely related to the mistake bounds of the best algorithms of the pool For example given a sequence of trials if there is an algorithm in the pool A that makes at most m mistakes then the Weighted Majority Algorithm will make at most c log jAj m mistakes on that sequence where c is xed constant
منابع مشابه
Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملA Multi-Objective Particle Swarm Optimization Algorithm for a Possibilistic Open Shop Problem to Minimize Weighted Mean Tardiness and Weighted Mean Completion Times
We consider an open shop scheduling problem. At first, a bi-objective possibilistic mixed-integer programming formulation is developed. The inherent uncertainty in processing times and due dates as fuzzy parameters, machine-dependent setup times and removal times are the special features of this model. The considered bi-objectives are to minimize the weighted mean tardiness and weighted mean co...
متن کاملA cloud-based simulated annealing algorithm for order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling
Make-to-order is a production strategy in which manufacturing starts only after a customer's order is received; in other words, it is a pull-type supply chain operation since manufacturing is carried out as soon as the demand is confirmed. This paper studies the order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling with MTO production strategy, the objec...
متن کاملAn Iterated Greedy Algorithm for Flexible Flow Lines with Sequence Dependent Setup Times to Minimize Total Weighted Completion Time
This paper explores the flexile flow lines where setup times are sequence- dependent. The optimization criterion is the minimization of total weighted completion time. We propose an iterated greedy algorithm (IGA) to tackle the problem. An experimental evaluation is conducted to evaluate the proposed algorithm and, then, the obtained results of IGA are compared against those of some other exist...
متن کاملA Novel B and B Algorithm for a Unrelated Parallel Machine Scheduling Problem to Minimize the Total Weighted Tardiness
This paper presents a scheduling problem with unrelated parallel machines and sequencedependent setup times that minimizes the total weighted tardiness. A new branch-and-bound (B and B) algorithm is designed incorporating the lower and upper bounding schemes and several dominance properties. The lower and upper bounds are derived through an assignment problem and the composite dispatching rule ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Comput.
دوره 108 شماره
صفحات -
تاریخ انتشار 1989